
MockMotor

© mockmotor.com 2024

Setting Up MockMotor
Server for Load Testing

Quick Start Guide

MockMotor

© mockmotor.com 2024

Contents
Quick Start Guide ... 1

You Have a Problem, Eh? .. 3

Sounds Complicated?... 4

Pre-Requisites ... 5

Linux ... 5

Windows? Sure, but … .. 5

Installation ... 6

Work Directory .. 6

Installing JDK 17 .. 7

Installing MockMotor Admin ... 8

Setting Custom Ports if Required ... 9

Starting the Admin Node .. 10

Creating Instance Admin User ... 11

Repointing the Application to Mocks .. 12

Begin to Mock the Services ...13

REST API Forward & Mock .. 14

GraphQL API Forward & Mock .. 17

SOAP API Forward & Mock .. 20

Questions? .. 24

MockMotor

© mockmotor.com 2024

You Have a Problem, Eh?
Your performance testing team needs to run load tests against your
application.

Unfortunately, the application uses backend APIs and any attempt to generate
a PROD-like load to the application causes APIs to either throttle the requests,
or degrade the response time, or charge your team some wild amounts.

The eícient solution here is to mock the backend APIs.

However, the default manual mode of mocking multiple transactions for many
accounts is time-consuming and error prone.

This guide provides steps for quickly setting up SOAP, REST, or GraphQL mock
services capable of supporting load tests with production-like volumes.

We’re going to use MockMotor as the server for these mocks.

To make the process of recording the mocks faster, MockMotor supports a
special “forward and cache” mode. Each request that doesn’t have a matching
mock reaction yet is ïrst forwarded to the live API, and then a mock reaction
is created based on the request data and the API response. Eventually, no
traíc goes through to the live API.

In many cases, the performance team doesn’t have to do any manual work
except executing a load run, letting MockMotor record all the transactions.

Even when a human intervention is required, the amount of manual work is
reduced signiïcantly.

MockMotor

© mockmotor.com 2024

Sounds Complicated?
Worry not!

If your team doesn’t have the competences or time to setup the mock
services, I can do that for you on a contracting basis.

Contact me at support@mockmotor.com or text +1-416-878-5693 to discuss.

Who am I?

My name Vlad. I’m a Software Architect for more than
20 years, living in Calgary, Canada.

I worked with various ðavours of IPC, starting from
RPC to CORBA to EJB to SOA and, ïnally, to APIs.

I’m helping my clients establish effective ways to test
API-based applications in the performance testing
phase.

MockMotor

© mockmotor.com 2024

Pre-Requisites

Linux
You will need:

 An x86(*) 64-bit Linux box
 2GB+ of free disk space and 2GB+ of free memory

(*) MockMotor is thoroughly tested on x86 machines. However, as a Java application, it is expected to
work equally well on non-x86 boxes.

Windows? Sure, but …
You can also install MockMotor as a Windows application for evaluation
purposes. MockMotor is expected to work just as well as Linux version, but it
was not tested under PROD-like load under Windows.

MockMotor

© mockmotor.com 2024

Installation
Log into the Linux box as the user who will run MockMotor. The username is
not important, so let’s suppose it is mm.

Work Directory
Create a dedicated work directory for MockMotor. It creates a signiïcant
number of ïles and it’s better not to mix them with ïles from other
applications.

Then change to that work directory before continuing with the installation.

$ mkdir mockmotor

$ cd mockmotor

MockMotor

© mockmotor.com 2024

Installing JDK 17
MockMotor requires JDK 17 or higher to run.

Check if the box already has this JDK installed:

$ java -version

If Java is not found, or its version is below 17, you must install JDK 17 or higher
ïrst. You can install it from the package manager (check your distribution’s
documentation) or download it from the MockMotor site. For the latter,
execute:

$ curl https://mockmotor.com/jdk17.tgz | tar xfz -

This creates a directory named jdk-17/, which contains the latest JDK-17
version tested with MockMotor.

If curl cannot access the JDK download, check if you need to set the HTTP proxy environment variable
before executing curl, e.g.:

export https_proxy=<your organization’s proxy>

You can smoke-test the JDK with this command:

$ jdk-17/bin/java -version

It should print something like

openjdk version "17.0.13" 2024-10-15

MockMotor

© mockmotor.com 2024

Installing MockMotor Admin

MockMotor only needs an admin node to work. For horizontal scalability, you can add extra clone nodes
later. For information on adding clone nodes, see the documentation.

In the planned MockMotor work directory, execute

$ curl https://mockmotor.com/MockMotor-latest.tgz | tar xfz -

After this script, the working directory should have MockMotor JAR and shell
scripts like below

283 Nov 13 06:57 mockmotor.config.xml.template
157127612 Nov 13 06:57 mockmotor.jar
2379 Nov 13 06:57 startMockMotor.sh
476 Nov 13 06:57 stopMockMotor.sh
166 Nov 13 06:57 updateMockMotor.sh

MockMotor

© mockmotor.com 2024

Setting Custom Ports if Required
By default, the MockMotor console listens on HTTP port 7080 and HTTPS port
7081. Port 7082 is used for clustering if more than one instance is conïgured.

You can skip this section if you're ïne with the default ports.

Clone the Conïguration Template

First, copy the conïguration ïle template to the conïguration ïle:

cp mockmotor.config.xml.template mockmotor.config.xml

Update the Ports

Then, using your editor of choice, update the mockmotor.conïg.xml to have
the desired port number. For example, below, the ports are moved to the 17xxx
range:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<config xmlns="http://mockmotor.com/config">
 <dataDirectory>.</dataDirectory>
 <clusterPort>17082</clusterPort>
 <httpPort>17080</httpPort>
 <httpsPort>17081</httpsPort>
 <logsDirectory>.</logsDirectory>
</config>

MockMotor

© mockmotor.com 2024

Starting the Admin Node
To start the admin node, execute

./startMockMotor.sh

The script will use the JDK conïgured in JAVA_HOME, the one in the PATH, or
the one under the jdk-17/ directory.

If no suitable JDK is found, the script asks to set the JAVA_HOME:

ERROR: No java was found; deïne JAVA_HOME pointing to Java 17 or newer.

If successful, the MockMotor admin prints a few log messages from the log
and the possible console URLs.

2024-12-11 05:59:11.099 INFO Started
ServerConnector@4b7e96a{HTTP/1.1,[http/1.1]}{0.0.0.0:17080}
2024-12-11 05:59:11.589 INFO Started
ServerConnector@5aa6202e{SSL,[ssl, http/1.1]}{0.0.0.0:17081}

To access the MockMotor console, point your browser to one of the
below URLs

 http://192.168.50.167:17080/console
 http://127.0.0.1:17080/console

MockMotor

© mockmotor.com 2024

Creating Instance Admin User
Navigate to the console URL most likely accessible from your machine.

MockMotor presents a self-signed certiïcate, and your browser will not be happy about it, warning that
the connection is not secure. Politely ignore the warning and continue.

MockMotor will ask you to create an instance administrator. The default
username is admin, but it can be changed to anything.

Set the password and continue.

The instance is up and running now.

MockMotor

© mockmotor.com 2024

Repointing the Application to Mocks
The fastest way to set up a mock is to forward requests to a live service and
record the transactions as mock reactions.

Before the repointing, your application points directly to the backend API.

After the repointing, your application points to MockMotor mock service. That
mock service has a forwarding reaction that points to the backend API.

If your application’s conïguration permits, use the plain HTTP URL for the mock service. That will save
you the hassle of conïguring the trust between your application and MockMotor.

MockMotor records the transactions, and gradually the traíc to the backend
API disappears. Eventually all requests are served from mocks.

MockMotor

© mockmotor.com 2024

Begin to Mock the Services
Let’s navigate to the admin’s mock environment. Click on the slider on the left
to open the sidebar. Then click on the “Admin’s Mock Environment” link.

Let’s see how it can be done for common service types.

MockMotor

© mockmotor.com 2024

REST API Forward & Mock
Let’s mock a currency conversion REST API as an example.

The service documentation is here: https://currency.getgeoapi.com/documentation/

Like most public APIs, its costs grow rapidly with the request volume, and a
typical load test generates high volumes.

Reviewing the documentation reveals that the key parameters for conversion
are “format,” “from,” “to,” and “amount.”

Let’s create a mock service that calls the API and caches the responses.

On the environment page, click the Add Forward Service button.

In the form, enter the service URL and list the key parameters.

URL: https://api.getgeoapi.com/v2/currency
Key Parameters: format from to amount

MockMotor

© mockmotor.com 2024

Submit the form, and MockMotor shows a new mock service with a forwarding
reaction that will cache responses received from the API.

In your application, conïgure one of the service URLs provided in the mock
service navigation pane instead of the real API’s URL.

Use a plain HTTP port to avoid extra work conïguring the certiïcates or trust if possible.

All other properties except the URL – access key, timeouts and others – should
remain the same as when the app calls the real API.

Execute a few requests from your application.

You should see new cached reactions in the list when you click the Reactions
link. Inspect them. If incorrect, modify or delete them and redo the test.

MockMotor

© mockmotor.com 2024

The client application executed three requests to the API — one to get a list of
currencies, another to convert one CAD to USD, and yet another to convert a
hundred CAD to USD. All three requests were cached and, if executed again,
will be served from the mocks.

The REST API mock is ready and can handle high loads without increasing the
API bill.

MockMotor

© mockmotor.com 2024

GraphQL API Forward & Mock
MockMotor can cache GraphQL services as well. Let’s mock an example
GraphQL service named GraphQLZero.

The service documentation is here: https://graphqlzero.almansi.me/

For GraphQL services, unlike REST and SOAP, MockMotor doesn’t require the
speciïcation of key parameters. Instead, it detects them automatically from
the query and argument names.

On the environment page, click the Add Forward Service button.

Enter the service URL into the form ïeld. Leave the “Key Properties” ïeld
unïlled.

URL: https://graphqlzero.almansi.me/api
Key Parameters: <leave empty>

MockMotor

© mockmotor.com 2024

Click on “Create …” button, and MockMotor creates a forwarding mock service
for the provided URL.

The service has one reaction, which forwards the requests to the GraphQL
backend and records the transactions as cached reactions.

MockMotor

© mockmotor.com 2024

In the mock service navigation pane, ïne the mock service URLs. They are
under “Point application to any of” header. Repoint your application to one of
the provided URLs.

Once we point our client application to the mock service URL, we can execute
the GraphQL requests. The responses are then cached as the mock reactions.

As you can see from the calls’ count against the ïrst cached reaction, the new
requests with the same parameters (the same query or mutation and the same
arguments) are served from the mocks and no longer sent to the real service.

MockMotor

© mockmotor.com 2024

SOAP API Forward & Mock
Let’s mock a number-to-words conversion SOAP API as an example.

The service documentation is here:
https://www.dataaccess.com/webservicesserver/numberconversion.wso

This example service is a free API, so calling it does not cost anything.
However, like for many other free services, a throttle control kicks in when the
requests-per-second value gets too high, interfering with the load test.

Let’s make sure our load tests do not get throttled.

On the environment page, click the Add Forward Service button.

Reviewing the documentation, we can see that the key parameters for this
service are “ubiNum” for number-to-text conversion and “dNum” for dollars-to-
text conversion.

Fill in the form and provide the service URL and the key request parameters.

MockMotor

© mockmotor.com 2024

URL: https://www.dataaccess.com/webservicesserver/numberconversion.wso
Key Parameters: ubiNum dNum

Click on the “Create…” button. MockMotor creates a mock service with a
forwarding reaction that sends all requests to the SOAP API but then caches
the responses.

You should see the forwarding reaction when you click on the “Reactions” link.

MockMotor

© mockmotor.com 2024

Point your application to one of the URLs listed under the mock service.

I suggest you use the plain HTTP URLs to avoid conïguring the certiïcate trust.

If you execute a few requests from your application, you should see new
cached reactions created.

MockMotor

© mockmotor.com 2024

The requests with repeating SOAP parameters are now served from mocks.

MockMotor

© mockmotor.com 2024

Questions?
I’m available to help you in installing the MockMotor instance.

Email me at: support@mockmotor.com

Text or WhatsApp me at: +1-416-878-5693

